Poster Session: Estimation of scleral biomechanical properties from air-puff-coupled optical coherence tomography

J Vis. 2023 Sep 1;23(11):38. doi: 10.1167/jov.23.11.38.

Abstract

Progression of myopia is usually accompanied by axial overgrowth of the eyeball, which affects scleral biomechanics (BM). To study scleral biomechanics, we propose the use of air-puff deformation swept-source OCT imaging. Air-puff deformation imaging was performed at different sites of ex vivo porcine (n=5) and rabbit (n=3) eyes, (<24hr postmortem): Nasal/temporal equatorial and posterior sclera (NE, NP, TE, TP), superior (S) and inferior (I) sclera, and cornea (C). Intraocular pressure was kept at 15mmHg. Deformation data were used as input to inverse finite element model (FEM) algorithms to reconstruct BM properties. Experimental deformation amplitudes showed dependence on the animal model, with porcine scleras exhibiting greater inter-site variation (displacement of S, I was up to four times greater than that of N, T), while rabbit scleras exhibited at most 40% of displacement differences between all sites. Both models showed significant (p<.001) differences in the temporal deformation profile between sclera and (C), but similarities in all scleral locations, suggesting that the scleral temporal profile is independent of scleral thickness variations. The FEM estimated an elastic modulus of 1.84 ± 0.30 MPa (I) to 6.04 ± 2.11 MPa (TE) for the porcine sclera. The use of scleral air-puff imaging is promising for noninvasive investigation of structural changes in the sclera associated with myopia and for monitoring possible modulation of scleral stiffness with myopia treatment.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Animals
  • Biomechanical Phenomena
  • Myopia* / diagnostic imaging
  • Rabbits
  • Sclera / diagnostic imaging
  • Swine
  • Tomography, Optical Coherence*