Understanding Catalytic Mechanisms and Cathode Interface Kinetics in Nonaqueous Mg-CO2 Batteries

ACS Appl Mater Interfaces. 2023 Oct 4;15(39):45895-45904. doi: 10.1021/acsami.3c09599. Epub 2023 Sep 21.

Abstract

We leverage first-principles density functional theory (DFT) calculations to understand the electrocatalytic processes in Mg-CO2 batteries, considering ruthenium oxide (RuO2) as an archetypical cathode catalyst. Our goal is to establish a mechanistic framework for understanding the charging and discharging reaction pathways and their influence on overpotentials. On the RuO2 (211) surface, we found reaction initiation through thermodynamically favorable adsorption of Mg followed by interactions with CO2. However, we found that the formation of carbonate (CO32-) and oxalate (C2O42-) intermediates via the activation of CO2 at the catalytic site is thermodynamically unfavorable. We predict that MgC2O4 will form as the discharge product due to its lower overpotential compared to MgCO3. However, MgC2O4 is thermodynamically unstable and is expected to decompose into MgCO3, MgO, and C as final discharge products. Through Bader charge analysis, we investigate the covalent interactions between intermediates and catalyst sites. Moreover, we study the electrochemical free energy profiles of the most favorable reaction pathways and determine discharge and charge overpotentials of 1.30 and 1.35 V, respectively. Our results underscore the importance of catalyst design for the cathode material to overcome performance limitations in nonaqueous Mg-CO2 batteries.

Keywords: batteries; catalyst; nonaqueous; nucleation; overpotential.