Descending control and regulation of spontaneous flight turns in Drosophila

bioRxiv [Preprint]. 2023 Oct 9:2023.09.06.555791. doi: 10.1101/2023.09.06.555791.

Abstract

The clumped distribution of resources in the world has influenced the pattern of foraging behavior since the origins of life, selecting for a common locomotor search motif in which straight movements through resource-poor regions alternate with zig -zag exploration in resource-rich domains. For example, flies execute rapid changes in flight heading called body saccades during local search, but suppress these turns during long-distance dispersal or when surging upwind after encountering an attractive odor plume. Here, we describe the key cellular components of a neural network in flies that generates spontaneous turns as well as a specialized neuron that inhibits the network to promote straight flight. Using 2-photon imaging, optogenetic activation, and genetic ablation, we show that only four descending neurons appear sufficient to generate the descending commands to execute flight saccades. The network is organized into two functional couplets-one for right turns and one for left-with each couplet consisting of an excitatory (DNae014) and inhibitory (DNb01) neuron that project to the flight motor neuropil within the ventral nerve cord. Using resources from recently published connectomes of the fly brain, we identified a large, unique interneuron (VES041) that forms inhibitory connections to all four saccade command neurons and created specific genetic driver lines for this cell. As suggested by its connectivity, activation of VES041 strongly suppresses saccades, suggesting that it regulates the transition between local search and long-distance dispersal. These results thus identify the critical elements of a network that not only structures the locomotor behavior of flies, but may also play a crucial role in their natural foraging ecology.

Publication types

  • Preprint