A cell size threshold triggers commitment to stomatal fate in Arabidopsis

Sci Adv. 2023 Sep 22;9(38):eadf3497. doi: 10.1126/sciadv.adf3497. Epub 2023 Sep 20.

Abstract

How flexible developmental programs integrate information from internal and external factors to modulate stem cell behavior is a fundamental question in developmental biology. Cells of the Arabidopsis stomatal lineage modify the balance of stem cell proliferation and differentiation to adjust the size and cell type composition of mature leaves. Here, we report that meristemoids, one type of stomatal lineage stem cell, trigger the transition from asymmetric self-renewing divisions to commitment and terminal differentiation by crossing a critical cell size threshold. Through computational simulation, we demonstrate that this cell size-mediated transition allows robust, yet flexible termination of stem cell proliferation, and we observe adjustments in the number of divisions before the differentiation threshold under several genetic manipulations. We experimentally evaluate several mechanisms for cell size sensing, and our data suggest that this stomatal lineage transition is dependent on a nuclear factor that is sensitive to DNA content.

MeSH terms

  • Arabidopsis* / genetics
  • Cell Differentiation
  • Cell Size
  • Computer Simulation
  • Plant Leaves