Thiobencarb Degradation by Pseudomonas sp. Th1 and Cupriavidus oxalaticus Th2 Isolated from Soil

Curr Microbiol. 2023 Sep 19;80(11):342. doi: 10.1007/s00284-023-03456-0.

Abstract

Thiobencarb has been extensively applied for weed control, resulting in severe environmental problems. In this study, thiobencarb degradation in liquid media and in soil by two bacterial strains, Pseudomonas sp. Th1 and Cupriavidus oxalaticus Th2, was investigated. Both bacterial isolates utilized the compound as a sole carbon, nitrogen and sulfur source. The utilization rates of thiobencarb by Pseudomonas sp. Th1 and C. oxalaticus Th2 in a liquid mineral medium were 1.02 ± 0.11 and 0.80 ± 0.07 µM/h at 100 µM, respectively. The determination of degradation and bacterial growth rates kinetics showed that the rates for pure thiobencarb followed the Michaelis-Menten model; meanwhile, the rates for thiobencarb in a commercial herbicide fitted well with the Edwards model. Their degradation by the mixed culture of both strains reduced the accumulation of intermediate products, including S-4-chlorobenzyl ethylthiocarbamate and 4-chlorobenzyl mercaptan, in media. The degradation by the mixed culture of these bacteria immobilized in rice straw was significantly higher than those of their free counterparts when determining in a packed bed bioreactor (P < 0.05). In addition, the inoculation of the mixed bacterial culture in soil significantly enhanced the degradation performance for both thiobencarb and propanil in a commercial herbicide. This study elucidates the differences in biodegradation of pure thiobencarb and thiobencarb in an herbicide.

MeSH terms

  • Herbicides* / pharmacology
  • Pseudomonas*
  • Soil

Substances

  • Soil
  • benthiocarb
  • Herbicides

Supplementary concepts

  • Cupriavidus oxalaticus