Fates of potentially persistent and mobile organic substances in embedded outdoor columns for artificial groundwater recharge simulation

Water Res. 2023 Oct 15:245:120615. doi: 10.1016/j.watres.2023.120615. Epub 2023 Sep 11.

Abstract

Persistent and mobile organic micropollutants (OMP) are ubiquitously found in the aquatic environment and have a high propensity to distribute in water resources and are difficult to remediate. Managed aquifer recharge systems such as artificial groundwater recharge, produce high-quality drinking water by removing numerous OMP from the source water. In this study, the fates of selected emerging and potentially persistent and mobile OMP were investigated in outdoor columns for artificial groundwater recharge simulation. Breakthrough curves of OMP were modeled to differentiate between sorption and bio-transformation. The study showed that selected OMP were persistent in the surface water and no photo-degradation was observed, except for diclofenac. The trends of dissolved organic carbon concentrations and UV light absorption at 254 nm wavelength suggest elevated biological activity in the first 0.3 m of the columns. The study revealed that the bio-transformation of cyanoguanidine, valsartan acid and diclofenac correlated with the biological activity in the sand columns. Benzyltrimethylammonium, n-(3-(dimethylamino)-propyl)methacrylamide, 1,3-di-o-tolylguanidine, 1,3-diphenylguanidine and melamine were completely eliminated within the first 0.3 m, likely due to sorption. Less mobile compounds such as carbamazepine and adamantan-1-amine also showed sorption. Sorption was also observed for diclofenac, likely due to decreased pH along the column depth. Retardation factors of several OMP were higher in the first 0.3 m of the columns, likely due to higher organic carbon contents compared to the remaining depth. Six organic substances (for example 2-acrylamido-2-methylpropane sulfonate and dimethylbenzene sulfonate) were persistent and mobile throughout the experiment. Overall, this study reveals the vital role of pH and sand organic carbon for sorption and residence time and biological activity for OMP elimination.

Keywords: Artificial groundwater recharge; Bio-transformation; Persistent and mobile organic micropollutants; Sorption; Surface water.