3D Printing of Ti-6Al-4V-Based Porous-Channel Dental Implants: Computational, Biomechanical, and Cytocompatibility Analyses

ACS Appl Bio Mater. 2023 Oct 16;6(10):4178-4189. doi: 10.1021/acsabm.3c00403. Epub 2023 Sep 15.

Abstract

Objective: Loosening of dental implants due to resorption of the surrounding bone is one of the challenging clinical complications in prosthetic dentistry. Generally, stiffness mismatch between an implant and its surrounding bone is one of the major factors. In order to prevent such clinical consequences, it is essential to develop implants with customized stiffness. The present study investigates the computational and experimental biomechanical responses together with cytocompatibility studies of three-dimensional (3D)-printed Ti-6Al-4V-based porous dental implants with varied stiffness properties. Methods: Additive manufacturing (direct metal laser sintering, DMLS) was utilized to create Ti-6Al-4V implants having distinct porosities and pore sizes (650 and 1000 μm), along with a nonporous (solid) implant. To validate the compression testing of the constructed implants and to probe their biomechanical response, finite element models were employed. The cytocompatibility of the implants was assessed using MG-63 cells, in vitro. Results: Both X-ray microcomputed tomography (μ-CT) and scanning electron microscopy (SEM) studies illustrated the ability of DMLS to produce implants with the designed porosities. Biomechanical analysis results revealed that the porous implants had less stiffness and were suitable for providing the appropriate peri-implant bone strain. Although all of the manufactured implants demonstrated cell adhesion and proliferation, the porous implants in particular supported better bone cell growth and extracellular matrix deposition. Conclusions: 3D-printed porous implants showed tunable stiffness properties with clinical translational potential.

Keywords: MG-63; Ti-6Al-4V; additive manufacturing; cytocompatibility; direct metal laser sintering; finite element analysis; porous dental implant.