Design of Fourier ptychographic illuminator for single full-FOV reconstruction

Opt Express. 2023 Aug 28;31(18):29826-29842. doi: 10.1364/OE.500385.

Abstract

Fourier ptychographic microscopy (FPM) is a spatial-temporal-modulation high-throughput imaging technique via a sequential angle-varied LED illumination. Therefore, the illuminator is one of the key components and the design of this illuminator is significant. However, because of the property of spherical wave, partial coherence, and aperture-induced vignetting, the acquired images must be processed in blocks first, and rely on parallel reconstruction via a graphics processing unit (GPU). The high cost makes it unappealing compared with commercial whole slide imaging system via a low-cost central processing unit (CPU). Especially, the vignetting severely destroys the space-invariant model and induces obvious artifacts in FPM, which is the most difficult problem. The conventional method is to divide the field of view (FOV) into many tiles and omit those imperfect images, which is crude and may discards low frequency information. In this paper, we reevaluated the conditions of vignetting in FPM. Through our analysis, the maximum side length of FOV is 0.759 mm for a single full-FOV reconstruction via a 4×/0.1 NA objective and a 4 mm spacing LED array in theory, while almost 1.0 mm can be achieved in practice due to the tolerance of algorithm. We found that FPM system can treat the vignetting coefficient Vf below 0.1 as brightfield images and Vf lager than 0.9 as darkfield images, respectively. We reported an optimized distribution for designing an illuminator without vignetting effect according to the off-the-shelf commercial products, which can reconstruct full FOV in one time via a CPU. By adjusting the distribution of LED units, the system could retrieve the object with the side length of FOV up to 3.8 mm for a single full-FOV reconstruction, which achieves the largest FOV that a typical 4×/0.1 NA objective with the field number of 22 mm can afford.