Supercontinuum generation in As2S3 chalcogenide waveguide pumped by all-fiber structured dual-femtosecond solitons

Opt Express. 2023 Aug 28;31(18):29440-29451. doi: 10.1364/OE.498193.

Abstract

Supercontinuum sources with high compactness are essential for applications such as optical sensing, airborne detection and communication systems. In the past decades, the adoption of bulky optical parametric amplifier to pump various chalcogenide glass waveguides are widely reported for on-chip mid-infrared supercontinuum generation, but this usually leads to a large volume of the whole system, and is not practical. Therefore, integrating advanced femtosecond fiber lasers with optical waveguides using nano-fabrication technology are highly desired. However, the scarcity of compact pump sources and the dispersion-matched high-nonlinearity waveguide in short wavelength regions have hindered the advancement of integrated supercontinuum source performances in the near and mid-infrared region. In this study, we demonstrate a broadband supercontinuum source from As2S3 waveguide pumped by a compact dual-femtosecond solitons pulse source. The laser is completely fiber structured, and its wavelength can be readily tuned from 2 to 2.3 µm using Raman soliton self-frequency shift technology in a Tm3+-doped fiber amplifier. Furthermore, the As2S3 waveguide is designed with controllable dispersion and high nonlinearity for a broadband supercontinuum generation. These results will advance the development of on-chip supercontinuum sources based on chalcogenide waveguides.