Achiral nanoparticle trapping and chiral nanoparticle separating with quasi-BIC metasurface

Opt Express. 2023 Aug 28;31(18):28912-28928. doi: 10.1364/OE.497432.

Abstract

Dielectric metasurfaces based on quasi-bound states in the continuum (quasi-BICs) are a promising approach for manipulating light-matter interactions. In this study, we numerically demonstrate the potential of silicon elliptical tetramer dielectric metasurfaces for achirality nanoparticle trapping and chiral nanoparticle separation. We first analyze a symmetric tetramer metasurface, which exhibits dual resonances (P1 and P2) with high electromagnetic field intensity enhancement and a high-quality factor (Q-factor). This metasurface can trap achiral nanoparticles with a maximum optical trapping force of 35 pN for 20 nm particles at an input intensity of 100 mW. We then investigate an asymmetric tetramer metasurface, which can identify and separate enantiomers under the excitation of left-handed circularly polarized (LCP) light. Results show that the chiral optical force can push one enantiomer towards regions of the quasi-BIC system while removing the other. In addition, the proposed asymmetric tetramer metasurface can provide multiple Fano resonances (ranging from R1 to R5) and high trap potential wells of up to 33 kBT. Our results demonstrate that the proposed all-dielectric metasurface has high performance in nanoparticle detection, with potential applications in biology, life science, and applied physics.