Continuous dynamic measurement of frequency scanning interferometry based on motion phase synchronization compensation and calibration

Opt Express. 2023 Sep 11;31(19):30974-30992. doi: 10.1364/OE.497770.

Abstract

We present a continuous dynamic frequency scanning interferometry (DFSI) measurement method based on motion phase synchronization compensation and calibration. By introducing heterodyne interferometry (HI) synchronization measurement and frequency scanning interferometry (FSI) motion phase compensation, dynamic continuous measurement is achieved and effectively suppresses the distance error introduced by the Doppler effect (DE). Based on this, the influence of the initial optical frequency deviation (OFD) of the tunable laser and the OFD of the HI laser on the dynamic absolute distance measurement (DADM) is analyzed; the relationships between the error of DADM with the variation of the OFD and the target motion parameters are investigated; and the residual DE introduced by the OFD is shown as the fundamental cause of the degradation of the accuracy of DFSI. We propose an online optical frequency measurement method based on HI combined with H13C14N gas absorption cells to resolve this problem. High-precision motion phase compensation is achieved by calibrating the optical frequency (fixed frequency) of the measured HI laser and the initial frequency of the tunable laser online during measurement and then performing motion phase calibration. To verify the effectiveness of our method, an optical frequency calibration experiment, a continuous DADM experiment, and a precision evaluation experiment were conducted, and a highly accurate continuous DADM was achieved.