Singular multi-wavelength and multi-waveband transparencies generated by P T-symmetric dumbbell optical waveguide networks

Opt Express. 2023 Sep 11;31(19):30932-30946. doi: 10.1364/OE.496684.

Abstract

In this paper, we investigate the singular multi-wavelength and multi-waveband transparencies generated by P T-symmetric dumbbell optical waveguide networks composed of two materials, and obtain the number regularity for the transparency wavelengths of one-unit-cell system and the general relationships for the transmission and reflection coefficients of multi-unit-cell systems. Consequently, three types of exact transparencies produced by multi-unit-cell systems are found based on the aforementioned formulas: (i)exact multi-wavelength unidirectional or bidirectional transparency as the same as those of one-unit-cell system; (ii)exact multi-wavelength bidirectional transparency at which one-unit-cell system cannot produce exact transparency, generated by adjusting the number of unit cells; (iii)exact multi-wavelength bidirectional transparency at which one-unit-cell system produces exact transparency, also generated by adjusting the number of unit cells. It provides theoretical foundations for developing highly sensitive and multi-wavelength optical filters. On the other hand, we also discover that multi-unit-cell systems can create approximate multi-waveband bidirectional transparencies by adjusting the number of unit cells, which provides scientific support for developing high-performance optical stealth devices.