miR-6893-3p is a bonafide negative regulator of splicing activator, RNPS1

3 Biotech. 2023 Oct;13(10):340. doi: 10.1007/s13205-023-03761-2. Epub 2023 Sep 11.

Abstract

RNA-binding protein with serine-rich domain 1, RNPS1, is a global guardian of splicing fidelity and has implications in cervical cancer cell progression. We previously observed elevated RNPS1 expression in cervical cancer cells compared to normal cells. To understand the mechanisms that lead to the dysregulation of RNPS1 expression in cervical cancer cells, we focused on microRNAs. Using an in silico approach, we predicted potential miRNA candidates targeting RNPS1. Among the candidate miRNAs, we found miR-6893-3p as a potential regulator of RNPS1 expression. Interestingly, the expression of miR-6893-3p is downregulated in cervical cancer cells compared to normal cells and its level is negatively correlated with the expression of RNPS1. Further, qPCR, Western blot analysis, and luciferase reporter assay confirmed that miR-6893-3p negatively regulates RNPS1 in HeLa cells. In this regard, overexpression of miR-6893-3p suppresses the endogenous mRNA and protein levels of RNPS1 in HeLa cells. Further investigation revealed that miR-6893-3p mediated regulation of RNPS1 is dependent on the binding of miR-6893-3p to a microRNA response element in the 3'UTR of RNPS1 mRNA. Furthermore, mechanistic analysis showed that targeted negative regulation of RNPS1 by miR-6893-3p occurs via enhanced mRNA degradation. Collectively, our findings establish miR-6893-3p as an important player in the post-transcriptional regulation of RNPS1 in HeLa cells.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-023-03761-2.

Keywords: Cervical cancer; RNPS1; Splicing; miR-6893-3p; miRNA.

Publication types

  • Case Reports