Soil water dynamics and biomass production of young rooibos (Aspalathus linearis) plants

Sci Rep. 2023 Sep 13;13(1):15154. doi: 10.1038/s41598-023-41666-5.

Abstract

Rooibos (Aspalathus linearis) is endemic to certain regions of the Western- and Northern Cape of South Africa, where it is also commercially grown. Being low-rainfall regions, information on the soil water balance of rooibos is essential, but such data is limited. Consequently, the effect of inorganic fertilisation and soil depth on soil water dynamics in a young rooibos plantation at Nardouwsberg, Western Cape were studied. Soil water content of plots planted to unfertilised and fertilised plants as well as that of bare soil were determined over the duration of the 2016/17 season. All treatments were replicated on shallow and deep soils sites and plant growth was determined at the end of the season. At the end of the study, the profile soil water content and evapotranspiration of the bare and planted plots were similar which prove that fallowing (water harvesting) is not an option in the sandy soils of this region. With the exception of the 20-30 cm root zone of the planted plots at the deep site, the water content decreased to levels below the permanent wilting point in the soil profile during summer. It was concluded that rooibos plants could survive through an adapted root system. A further survival method was proposed, involving moisture moved through evaporation from the deeper soil layers into the drying-front in the ~ 10-30 cm soil layer where a condensation-evaporation cycle enables rooibos to harvest small amounts of water. The highest shoot biomass with the longest taproot resulted from the unfertilised treatment on the deep soil thanks to higher soil water content, whereas the shoot and root biomass of the fertilised treatment at both sites were low due to high P soil concentration. This study revealed that unfertilised plants on deeper soils result in higher rooibos production under drought conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aspalathus*
  • Biomass
  • Sand
  • Soil*
  • Water

Substances

  • Soil
  • Sand
  • Water