Extreme events, trophic chain reactions, and shifts in phenotypic selection

Sci Rep. 2023 Sep 13;13(1):15181. doi: 10.1038/s41598-023-41940-6.

Abstract

Demographic consequences of rapid environmental change and extreme climatic events (ECEs) can cascade across trophic levels with evolutionary implications that have rarely been explored. Here, we show how an ECE in high Arctic Svalbard triggered a trophic chain reaction, directly or indirectly affecting the demography of both overwintering and migratory vertebrates, ultimately inducing a shift in density-dependent phenotypic selection in migratory geese. A record-breaking rain-on-snow event and ice-locked pastures led to reindeer mass starvation and a population crash, followed by a period of low mortality and population recovery. This caused lagged, long-lasting reductions in reindeer carrion numbers and resultant low abundances of Arctic foxes, a scavenger on reindeer and predator of migratory birds. The associated decrease in Arctic fox predation of goose offspring allowed for a rapid increase in barnacle goose densities. As expected according to r- and K-selection theory, the goose body condition (affecting reproduction and post-fledging survival) maximising Malthusian fitness increased with this shift in population density. Thus, the winter ECE acting on reindeer and their scavenger, the Arctic fox, indirectly selected for higher body condition in migratory geese. This high Arctic study provides rare empirical evidence of links between ECEs, community dynamics and evolution, with implications for our understanding of indirect eco-evolutionary impacts of global change.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ducks
  • Foxes*
  • Geese
  • Meat
  • Reindeer*