Development of Magnification Tomosynthesis for Superior Resolution in Diagnostic Mammography

Proc SPIE Int Soc Opt Eng. 2021 Feb:11595:115951J. doi: 10.1117/12.2580280. Epub 2021 Feb 15.

Abstract

Our previous work showed that digital breast tomosynthesis (DBT) supports super-resolution (SR). Clinical systems are not yet designed to optimize SR; this can be demonstrated with a high-frequency line-resolution pattern. SR is achieved if frequencies are oriented laterally, but not if frequencies are oriented in the perpendicular direction; i.e., the posteroanterior (PA) direction. We are developing a next-generation tomosynthesis (NGT) prototype with new trajectories for the x-ray source. This system is being designed to optimize SR not just for screening, but also for diagnostic mammography; specifically, for magnification DBT (M-DBT). SR is not achieved clinically in magnification mammography, since the acquisition is 2D. The aim of this study is to investigate SR in M-DBT, and analyze how anisotropies differ from screening DBT (S-DBT). We have a theoretical model of a high-frequency sinusoidal test object. First, a conventional scanning motion (directed laterally) was simulated. In the PA direction, SR was not achieved in either S-DBT or M-DBT. Next, the scanning motion was angled relative to the lateral direction. This motion introduces submillimeter offsets in source positions in the PA direction. Theoretical modeling demonstrated that SR was achieved in M-DBT, but not in S-DBT, in the PA direction. This work shows that, with the use of magnification, anisotropies in SR are more sensitive to small offsets in the source motion, leading to insights into how to design M-DBT systems.

Keywords: Digital breast tomosynthesis; Fourier transform; aliasing; digital imaging; image quality; image reconstruction; magnification mammography; super-resolution.