Same process, different patterns: pervasive effect of evolutionary time on species richness in freshwater fishes

Proc Biol Sci. 2023 Sep 13;290(2006):20231066. doi: 10.1098/rspb.2023.1066. Epub 2023 Sep 13.

Abstract

Tropical lands harbour the highest number of species, resulting in the ubiquitous latitudinal diversity gradient (LDG). However, exceptions to this pattern have been observed in some taxa, explained by the interaction between the evolutionary histories and environmental factors that constrain species' physiological and ecological requirements. Here, we applied a deconstruction approach to map the detailed species richness patterns of Actinopterygian freshwater fishes at the class and order levels and to disentangle their drivers using geographical ranges and a phylogeny, comprising 77% (12 557) of all described species. We jointly evaluated seven evolutionary and ecological hypotheses posited to explain the LDG: diversification rate, time for speciation, species-area relationship, environmental heterogeneity, energy, temperature seasonality and past temperature stability. We found distinct diversity gradients across orders, including expected, bimodal and inverse LDGs. Despite these differences, the positive effect of evolutionary time explained patterns for all orders, where species-rich regions are inhabited by older species compared to species-poor regions. Overall, the LDG of each order has been shaped by a unique combination of factors, highlighting the importance of performing a joint evaluation of evolutionary, historical and ecological factors at different taxonomic levels to reach a comprehensive understanding on the causes driving global species richness patterns.

Keywords: actinopterygii; latitudinal diversity gradients; temperature seasonality; time-for-speciation hypothesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Evolution*
  • Fishes*
  • Fresh Water
  • Geography
  • Phylogeny

Associated data

  • figshare/10.6084/m9.figshare.21122320