Identification of Mixtures of Two Types of Body Fluids Using the Multiplex Methylation System and Random Forest Models

Curr Med Sci. 2023 Oct;43(5):908-918. doi: 10.1007/s11596-023-2770-1. Epub 2023 Sep 13.

Abstract

Objective: Body fluid mixtures are complex biological samples that frequently occur in crime scenes, and can provide important clues for criminal case analysis. DNA methylation assay has been applied in the identification of human body fluids, and has exhibited excellent performance in predicting single-source body fluids. The present study aims to develop a methylation SNaPshot multiplex system for body fluid identification, and accurately predict the mixture samples. In addition, the value of DNA methylation in the prediction of body fluid mixtures was further explored.

Methods: In the present study, 420 samples of body fluid mixtures and 250 samples of single body fluids were tested using an optimized multiplex methylation system. Each kind of body fluid sample presented the specific methylation profiles of the 10 markers.

Results: Significant differences in methylation levels were observed between the mixtures and single body fluids. For all kinds of mixtures, the Spearman's correlation analysis revealed a significantly strong correlation between the methylation levels and component proportions (1:20, 1:10, 1:5, 1:1, 5:1, 10:1 and 20:1). Two random forest classification models were trained for the prediction of mixture types and the prediction of the mixture proportion of 2 components, based on the methylation levels of 10 markers. For the mixture prediction, Model-1 presented outstanding prediction accuracy, which reached up to 99.3% in 427 training samples, and had a remarkable accuracy of 100% in 243 independent test samples. For the mixture proportion prediction, Model-2 demonstrated an excellent accuracy of 98.8% in 252 training samples, and 98.2% in 168 independent test samples. The total prediction accuracy reached 99.3% for body fluid mixtures and 98.6% for the mixture proportions.

Conclusion: These results indicate the excellent capability and powerful value of the multiplex methylation system in the identification of forensic body fluid mixtures.

Keywords: DNA methylation; body fluid identification; mixing ratio; mixture; multiplex assay; random forest model.