Anti-inflammatory, Anti-fibrotic and Pro-cardiomyogenic Effects of Genetically Engineered Extracellular Vesicles Enriched in miR-1 and miR-199a on Human Cardiac Fibroblasts

Stem Cell Rev Rep. 2023 Nov;19(8):2756-2773. doi: 10.1007/s12015-023-10621-2. Epub 2023 Sep 13.

Abstract

Rationale: Emerging evidence indicates that stem cell (SC)- derived extracellular vesicles (EVs) carrying bioactive miRNAs are able to repair damaged or infarcted myocardium and ameliorate adverse remodeling. Fibroblasts represent a major cell population responsible for scar formation in the damaged heart. However, the effects of EVs on cardiac fibroblast (CFs) biology and function has not been investigated.

Objective: To analyze the biological impact of stem cell-derived EVs (SC-EVs) enriched in miR-1 and miR-199a on CFs and to elucidate the underlying molecular mechanisms.

Methods and results: Genetically engineered human induced pluripotent stem cells (hiPS) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) expressing miR-1 or miR-199a were used to produce miR-EVs. Cells and EVs were thoughtfully analyzed for miRNA expression using RT-qPCR method. Both hiPS-miRs-EVs and UC-MSC-miRs-EVs effectively transferred miRNAs to recipient CFs, however, hiPS-miRs-EVs triggered cardiomyogenic gene expression in CFs more efficiently than UC-MSC-miRs-EVs. Importantly, hiPS-miR-1-EVs exhibited cytoprotective effects on CFs by reducing apoptosis, decreasing levels of pro-inflammatory cytokines (CCL2, IL-1β, IL-8) and downregulating the expression of a pro-fibrotic gene - α-smooth muscle actin (α-SMA). Notably, we identified a novel role of miR-199a-3p delivered by hiPS-EVs to CFs, in triggering the expression of cardiomyogenic genes (NKX2.5, TNTC, MEF2C) and ion channels involved in cardiomyocyte contractility (HCN2, SCN5A, KCNJ2, KCND3). By targeting SERPINE2, miR-199a-3p may reduce pro-fibrotic properties of CFs, whereas miR-199a-5p targeted BCAM and TSPAN6, which may be implicated in downregulation of inflammation.

Conclusions: hiPS-EVs carrying miR-1 and miR-199a attenuate apoptosis and pro-fibrotic and pro-inflammatory activities of CFs, and increase cardiomyogenic gene expression. These finding serve as rationale for targeting fibroblasts with novel EV-based miRNA therapies to improve heart repair after myocardial injury.

Keywords: Cardiac fibroblasts; Extracellular vesicles; Heart repair; Induced pluripotent stem cells; miR-1; miR-199a.

MeSH terms

  • Anti-Inflammatory Agents
  • Extracellular Vesicles* / genetics
  • Fibroblasts
  • Humans
  • Induced Pluripotent Stem Cells*
  • MicroRNAs* / genetics
  • Serpin E2
  • Tetraspanins

Substances

  • Serpin E2
  • MicroRNAs
  • Anti-Inflammatory Agents
  • TSPAN6 protein, human
  • Tetraspanins
  • MIRN1 microRNA, human