A vital sign signal noise suppression method for wearable piezoelectric devices

Rev Sci Instrum. 2023 Sep 1;94(9):095104. doi: 10.1063/5.0155762.

Abstract

This paper tackles the problem of noise suppression during vital sign signal monitoring. Physiological signal monitoring is a significant and promising medical monitoring method, and wearable medical monitoring devices based on piezoelectric polymer sensors are a trending way for their advantages of being flexible in the shape, portable to use, and comfortable to wear. However, this raises the question that the measured signal contains much more noise components. To avoid the following shortcoming of low signal to noise ratio (SNR), a noise suppression method based on improved wavelet threshold and empirical mode decomposition combined with singular value decomposition (SVD) screening the intrinsic mode function (IMF) components is proposed. A wavelet transform is first used under the combination of hard and soft thresholds to focus the target range in the low-frequency region where the energy of the physiological signal is concentrated. Then, a complete ensemble empirical mode decomposition is used to decompose the signal effectively, which can resist the influence of random noises. Meanwhile, a SVD decomposition procedure was used to filter out the lower correlated IMF components to retain the validity of the original signal. We verified the effectiveness of the proposed method through simulated and measured experiments as well as the advantages and disadvantages of the algorithm compared with other physiological signal denoising algorithms through SNR filtering results, power spectrum distribution, and other perspectives. The results proved that the proposed method could effectively remove more detailed noise and improve the SNR of the signal efficiently, which is more conducive to the demand for auxiliary medical diagnosis in the future.