Structural Modeling of Cytokine-Receptor-JAK2 Signaling Complexes Using AlphaFold Multimer

J Chem Inf Model. 2023 Sep 25;63(18):5874-5895. doi: 10.1021/acs.jcim.3c00926. Epub 2023 Sep 11.

Abstract

Homodimeric class 1 cytokine receptors include the erythropoietin (EPOR), thrombopoietin (TPOR), granulocyte colony-stimulating factor 3 (CSF3R), growth hormone (GHR), and prolactin receptors (PRLR). These cell-surface single-pass transmembrane (TM) glycoproteins regulate cell growth, proliferation, and differentiation and induce oncogenesis. An active TM signaling complex consists of a receptor homodimer, one or two ligands bound to the receptor extracellular domains, and two molecules of Janus Kinase 2 (JAK2) constitutively associated with the receptor intracellular domains. Although crystal structures of soluble extracellular domains with ligands have been obtained for all of the receptors except TPOR, little is known about the structure and dynamics of the complete TM complexes that activate the downstream JAK-STAT signaling pathway. Three-dimensional models of five human receptor complexes with cytokines and JAK2 were generated here by using AlphaFold Multimer. Given the large size of the complexes (from 3220 to 4074 residues), the modeling required a stepwise assembly from smaller parts, with selection and validation of the models through comparisons with published experimental data. The modeling of active and inactive complexes supports a general activation mechanism that involves ligand binding to a monomeric receptor followed by receptor dimerization and rotational movement of the receptor TM α-helices, causing proximity, dimerization, and activation of associated JAK2 subunits. The binding mode of two eltrombopag molecules to the TM α-helices of the active TPOR dimer was proposed. The models also help elucidate the molecular basis of oncogenic mutations that may involve a noncanonical activation route. Models equilibrated in explicit lipids of the plasma membrane are publicly available.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Cytokines*
  • Humans
  • Janus Kinase 2
  • Ligands
  • Receptors, Cytokine*
  • Signal Transduction

Substances

  • Receptors, Cytokine
  • Cytokines
  • Janus Kinase 2
  • Ligands
  • JAK2 protein, human