Micropollutant Removal Efficiency of Advanced Wastewater Treatment Plants: A Systematic Review

Environ Health Insights. 2023 Sep 8:17:11786302231195158. doi: 10.1177/11786302231195158. eCollection 2023.

Abstract

Introduction: Various review papers have been published regarding the occurrence and fate of micropollutants (MPs). MPs in the aquatic environment are still not well reviewed to generate comprehensive summaries with a special focus on their removal from wastewater using conventional and advanced treatment processes. Therefore, this review aimed to provide a synopsis of the efficiency of the advanced wastewater treatment plants in the removal of MPs.

Materials and methods: A systematic search of published literature was conducted on the National Library of Medicine (NLM) database, Web of Science, Joanna Briggs Institute (JBI) database, Scopus, and Google Scholar, based on studies with evidence of removal of MPs in the wastewater treatment process. Screening of the published articles was made using pre-specified inclusion and exclusion criteria.

Results: Amongst the 1545 studies searched, 21 full-length articles were analyzed that showed 7 treatment options related to the removal of MPs from wastewater. MPs from wastewater effluents were successfully and effectively removed by advanced treatment techniques. Advanced Oxidation Processes (AOPs), membrane processes, and adsorption processes have all been shown to be potential solutions for the removal of MPs in advanced treatment plants (WWTPs). But, there are 2 critical issues associated with the application of the advanced treatment options which are high operational cost and the formation of dangerous by-products and concentrated residues.

Conclusion: This study identified that the removal of MPs using WWTPs was commonly incomplete with varying removal efficiency. Therefore, the adaptation and scale-up of the cost-effective and efficient combined wastewater treatment technology are vital to creating an absolute barrier to MPs emissions.

Keywords: Advanced wastewater treatment plants; endocrine-disrupting chemicals; micropollutants; pharmaceuticals.

Publication types

  • Review