Evaluation of air quality and health risks associated with trace elements in respirable particulates (PM2.5) from Islamabad, Pakistan

Environ Monit Assess. 2023 Sep 11;195(10):1182. doi: 10.1007/s10661-023-11824-3.

Abstract

Fine atmospheric particulates are associated with numerous environmental and health issues as they can penetrate deeply in the respiratory tract thereby adversely affecting the human health. This study aimed to investigate the concentrations of trace elements in the respirable (PM2.5) fraction of the atmospheric particulates and to understand their pollution status and health risks. The samples were collected from Islamabad, and the metals were extracted using HNO3 and HCl based extraction method. Atomic absorption spectroscopy was employed to quantify the concentrations of selected trace elements. PM2.5 exhibited considerable variations in their minimum (4.737 µg/m3) and maximum (108.1 µg/m3) levels. The significant contributors among the selected elements bound to PM2.5 were Ca (1016 ng/m3), K (759.8 ng/m3), Mg (483.0 ng/m3), Fe (469.7 ng/m3), and Zn (341.1 ng/m3), while Ag (0.578 ng/m3) was found at the lowest levels with an overall descending order: Ca > K > Mg > Fe > Zn > Cu > Pb > Ni > Cd > Mn > Sr > Cr > Co > Li > Ag. Multivariate PCA and CA identified industrial activities, combustion processes and automobile emissions as the main anthropogenic contributors to particulate pollution. Enrichment factors and geoaccumulation indices were computed to assess the pollution status. The results also revealed that among the trace elements, Cd showed extremely high contamination, followed by Ag, Zn, and Pb, which showed moderate to high contamination in the atmospheric particulates. Carcinogenic health risks from Pb and Ni were found to be within the safe limit (1.0 × 10-6); however, Cr, Co, and Cd exposure was linked to significant cancer risks. The present elemental levels in PM2.5 were also compared with the reported levels from other regions around the world.

Keywords: AAS; Ecological risk; Health hazard; Multivariate analysis; Pollution index; Toxic metal.

MeSH terms

  • Air Pollution*
  • Cadmium
  • Dust
  • Environmental Monitoring
  • Humans
  • Lead
  • Pakistan
  • Trace Elements*

Substances

  • Trace Elements
  • Cadmium
  • Lead
  • Dust