Identification and validation of ferroptosis-related biomarkers in steroid-induced osteonecrosis of the femoral head

Int Immunopharmacol. 2023 Nov;124(Pt A):110906. doi: 10.1016/j.intimp.2023.110906. Epub 2023 Sep 9.

Abstract

Objectives: Treatment of steroid-induced osteonecrosis of the femoral head (SIONFH) is challenging. Due to the limited understanding of its molecular mechanisms, investigating the potential mechanisms of ferroptosis will shed light on SIONFH and provide directions for treating this disease.

Methods: The GSE123568 dataset was utilized to apply various bioinformatics methodologies to identify ferroptosis-related hub genes (FRHGs). Subsequently, the importance of these genes and the reliability of the results were confirmed using protein data-independent acquisition (DIA) and cell experiments. Finally, we assessed the correlation between FRHG expression and immune cell infiltration.

Results: Thirty-one hub genes were identified and validated by constructing a protein-protein interaction network and subsequent screening using experimentally determined interactions. These 31 hub genes were enriched in immunity, the AMPK signaling pathway, and the Toll-like receptor signaling pathway. Next, we identified a diagnostic marker comprising two ferroptosis-related genes, NCF2 and SLC2A1. The differential expression of these two genes in healthy and necrotic regions was confirmed by protein DIA analysis. Cell experiments verified the link between FRHGs and ferroptosis and preliminarily explored the potential mechanism of the antioxidant vitexin in promoting osteogenic differentiation in cells. The diagnostic efficiency of these two markers was confirmed by receiver operating characteristic curve (ROC) curves, yielding an area under the curve of 1.0. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated enrichment of FRHGs in the superoxide anion and HIF-1 signaling pathways. A significant correlation was observed between FRHGs and various immune cell populations.

Conclusion: NCF2 and SLC2A1 are promising ferroptosis-related diagnostic biomarkers of SIONFH. Concurrently, we embarked on a preliminary investigation to elucidate the potential mechanism underlying the promotion of osteogenic differentiation by the antioxidant vitexin. Moreover, these biomarkers are associated with distinct immune cell populations.

Keywords: Ferroptosis-related biomarker; Infiltrating immune cells; Protein data independent acquisition analysis; Steroid-induced osteonecrosis of the femoral head; Vitexin.