Over-activation of cold tolerance in arabidopsis causes carbohydrate shortage compared with Chorispora bungeana

J Plant Physiol. 2023 Oct:289:154083. doi: 10.1016/j.jplph.2023.154083. Epub 2023 Sep 4.

Abstract

Many plants cope with cold stress by developing acquired freezing tolerance (AFT) through cold acclimation (CA), and some species have strong basal freezing tolerance (BFT) independent of CA. Although CA has been extensively studied, its potential in agricultural applications is still unclear. Here, carbohydrate metabolism and transcriptome in AFT plant Arabidopsis and BFT plant Chorispora bungeana were compared with each other. The results showed that, although both species were able to accumulate soluble sugars during CA, leaf starch accumulation in the daytime was almost blocked in Arabidopsis while it was greatly enhanced in C. bungeana, revealing that Arabidopsis experienced carbohydrate shortage during CA. Transcriptome and pathway enrichment analysis found that genes for photosynthesis antenna proteins were generally repressed by cold stress in both species. However, cold-up-regulated genes were enriched in protein translation in Arabidopsis, whilst they were enriched in carotenoid biosynthesis, flavonoid biosynthesis, and beta-amylases in C. bungeana. Furthermore, weighted gene co-expression network analysis (WGCNA) showed that the inhibition of starch accumulation was associated with down-regulation of genes for photosynthesis antenna proteins and up-regulation of genes for protein translation, DNA repair, and proteasome in Arabidopsis but not in C. bungeana. Taken together, our results revealed that over-activation of common tolerant mechanisms resulted in insufficient carbohydrate supplies in Arabidopsis during CA, and photoprotective mechanisms played important roles in cold adaptation of C. bungeana. These findings uncovered the drawback of CA in improving freezing tolerance and highlighted photoprotection as a possible solution for agricultural applications.

Keywords: Carbohydrates; Cold acclimation; Freezing tolerance; Photoprotection; Starch.