Colorimetric Paper-Based Analytical Devices (PADs) Backed by Chemometrics for Pd(II) Detection

Sensors (Basel). 2023 Aug 25;23(17):7425. doi: 10.3390/s23177425.

Abstract

This paper presents the development of cheap and selective Paper-based Analytical Devices (PADs) for selective Pd(II) determination from very acidic aqueous solutions. The PADs were obtained by impregnating two cm-side squares of filter paper with an azoic ligand, (2-(tetrazolylazo)-1,8 dihydroxy naphthalene-3,6,-disulphonic acid), termed TazoC. The so-obtained orange TazoC-PADs interact quickly with Pd(II) in aqueous solutions by forming a complex purple-blue-colored already at pH lower than 2. The dye complexes no other metal ions at such an acidic media, making TazoC-PADs highly selective to Pd(II) detection. Besides, at higher pH values, other cations, for example, Cu(II) and Ni(II), can interact with TazoC through the formation of stable and pink-magenta-colored complexes; however, it is possible to quantify Pd(II) in the presence of other cations using a multivariate approach. To this end, UV-vis spectra of the TazoC-PADs after equilibration with the metal ions solutions were registered in the 300-800 nm wavelength range. By applying Partial Least Square regression (PLS), the whole UV-vis spectra of the TazoC-PADs were related to the Pd(II) concentrations both when present alone in solution and also in the presence of Cu(II) and Ni(II). Tailored PLS models obtained with matrix-matched standard solutions correctly predicted Pd(II) concentrations in unknown samples and tap water spiked with the metal cation, making the method promising for quick and economical sensing of Pd(II).

Keywords: Partial Least Square regression (PLS); analytical method; chemometrics; colorimetric Paper-based Analytical Devices (PADs); colorimetric sensors; metal-ions sensing; palladium(II).

Grants and funding

This research received no external funding.