The Antifungal Fibers of Polyamide 12 Containing Silver and Metal Oxides

Materials (Basel). 2023 Aug 25;16(17):5837. doi: 10.3390/ma16175837.

Abstract

The textile market is a vast industry that utilizes antimicrobial polymeric materials, including various types of fabrics, for medical and personal protection applications. Therefore, this study focused on examining four types of antimicrobial fillers, namely, metal oxides (zinc, titanium, copper) and nanosilver, as fillers in Polyamide 12 fibers. These fillers can be applied in the knitting or weaving processes to obtain woven polymeric fabrics for medical applications. The production of the fibers in this study involved a two-step approach: twin-screw extrusion and melt spinning. The resulting fibers were then characterized for their thermal properties (TGA, DSC), mechanical performance (tensile test, DMA), and antifungal activity. The findings of the study indicated that all of the fibers modified with fillers kill Candida albicans. However, the fibers containing a combination of metal oxides and silver showed significantly higher antifungal activity (reduction rate % R = 86) compared to the fibers with only a mixture of metal oxides (% R = 21). Furthermore, the inclusion of metal oxides and nanosilver in the Polyamide 12 matrix hindered the formation of the crystal phase and decreased slightly the thermal stability and mechanical properties, especially for the composites with nanosilver. It was attributed to their worse dispersion and the presence of agglomerates.

Keywords: Polyamide 12; biocidal fillers; composite fibers; dispersion; melt spinning.