Electrode Materials, Structural Design, and Storage Mechanisms in Hybrid Supercapacitors

Molecules. 2023 Sep 4;28(17):6432. doi: 10.3390/molecules28176432.

Abstract

Currently, energy storage systems are of great importance in daily life due to our dependence on portable electronic devices and hybrid electric vehicles. Among these energy storage systems, hybrid supercapacitor devices, constructed from a battery-type positive electrode and a capacitor-type negative electrode, have attracted widespread interest due to their potential applications. In general, they have a high energy density, a long cycling life, high safety, and environmental friendliness. This review first addresses the recent developments in state-of-the-art electrode materials, the structural design of electrodes, and the optimization of electrode performance. Then we summarize the possible classification of hybrid supercapacitor devices, and their potential applications. Finally, the fundamental theoretical aspects, charge-storage mechanism, and future developing trends are discussed. This review is intended to provide future research directions for the next generation of high-performance energy storage devices.

Keywords: design structure; electrode materials; energy storage mechanism; hybrid supercapacitors.

Publication types

  • Review

Grants and funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21805247) and the China Postdoctoral Science Foundation (Grant No. 2018M630831).