Pathogenesis, Clinical Features, and Treatment of Patients with Myelin Oligodendrocyte Glycoprotein (MOG) Autoantibody-Associated Disorders Focusing on Optic Neuritis with Consideration of Autoantibody-Binding Sites: A Review

Int J Mol Sci. 2023 Aug 29;24(17):13368. doi: 10.3390/ijms241713368.

Abstract

Although there is a substantial amount of data on the clinical characteristics, diagnostic criteria, and pathogenesis of myelin oligodendrocyte glycoprotein (MOG) autoantibody-associated disease (MOGAD), there is still uncertainty regarding the MOG protein function and the pathogenicity of anti-MOG autoantibodies in this disease. It is important to note that the disease characteristics, immunopathology, and treatment response of MOGAD patients differ from those of anti-aquaporin 4 antibody-positive neuromyelitis optica spectrum disorders (NMOSDs) and multiple sclerosis (MS). The clinical phenotypes of MOGAD are varied and can include acute disseminated encephalomyelitis, transverse myelitis, cerebral cortical encephalitis, brainstem or cerebellar symptoms, and optic neuritis. The frequency of optic neuritis suggests that the optic nerve is the most vulnerable lesion in MOGAD. During the acute stage, the optic nerve shows significant swelling with severe visual symptoms, and an MRI of the optic nerve and brain lesion tends to show an edematous appearance. These features can be alleviated with early extensive immune therapy, which may suggest that the initial attack of anti-MOG autoantibodies could target the structures on the blood-brain barrier or vessel membrane before reaching MOG protein on myelin or oligodendrocytes. To understand the pathogenesis of MOGAD, proper animal models are crucial. However, anti-MOG autoantibodies isolated from patients with MOGAD do not recognize mouse MOG efficiently. Several studies have identified two MOG epitopes that exhibit strong affinity with human anti-MOG autoantibodies, particularly those isolated from patients with the optic neuritis phenotype. Nonetheless, the relations between epitopes on MOG protein remain unclear and need to be identified in the future.

Keywords: animal model; antibody-binding epitope; autoantibody; myelin oligodendrocyte glycoprotein; optic neuritis.

Publication types

  • Review

MeSH terms

  • Animals
  • Autoantibodies
  • Binding Sites
  • Epitopes
  • Humans
  • Mice
  • Myelin-Oligodendrocyte Glycoprotein
  • Optic Neuritis* / therapy

Substances

  • Myelin-Oligodendrocyte Glycoprotein
  • Autoantibodies
  • Epitopes