Zwitterionic "Solutions" for Reversible CO2 Capture

ChemSusChem. 2023 Dec 7;16(23):e202300971. doi: 10.1002/cssc.202300971. Epub 2023 Sep 14.

Abstract

The zwitterions resulting from the covalent attachment of 3- or 4-hydroxy benzene to the 1,3-dimethylimidazolium cation represent basic compounds (pKa of 8.68 and 8.99 in aqueous solutions, respectively) that chemisorb in aqueous solutions 0.58 mol/mol of carbon dioxide at 1.3 bar (absolute) and 40 °C. Equimolar amounts of chemisorbed CO2 in these solutions are obtained at 10 bar and 40 °C. Chemisorption takes place through the formation of bicarbonate in the aqueous solution using imidazolium-containing phenolate. CO2 is liberated by simple pressure relief and heating, regenerating the base. The enthalpy of absorption was estimated to be -38 kJ/mol, which is about 30 % lower than the enthalpy of industrially employed aqueous solutions of MDEA (estimated at -53 kJ/mol using the same experimental apparatus). The physisorption of CO2 becomes relevant at higher pressures (>10 bar) in these aqueous solutions. Combined physio- and chemisorption of up to 1.3 mol/mol at 40 bar and 40 °C can be attained with these aqueous zwitterionic solutions that are thermally stable and can be recycled at least 20 times.

Keywords: bicarbonate; carbon dioxide capture; ionic liquids; organic base; zwitterion.