miR-1301-3p promotes invasion and migration and EMT progression in esophageal cancer by downregulating NBL1 expression

Thorac Cancer. 2023 Oct;14(30):3032-3041. doi: 10.1111/1759-7714.15093. Epub 2023 Sep 7.

Abstract

Background: Esophageal cancer (ESCA) is one of the most aggressive and lethal human malignant cancers. MicroRNA-1301-3p (miR-1301-3p) plays vital roles in a majority of malignancies. The aim of this study was to investigate the role of miR-1301-3p/NBL1 axis on ESCA cell invasion, migration, epithelial-mesenchymal transition (EMT) process, as well as its association with prognosis of ESCA patients.

Methods: The expression levels of miR-1301-3p and NBL1 were predicted by bioinformatics and further verified by RT-qPCR assays. Kaplan-Meier (K-M) plotter analysis and univariate and multivariate Cox analyses were used to evaluate the relationship between miR-1301-3p and clinicopathological variables and prognosis. The role of miR-1301-3p on cell invasion, migration was detected by transwell invasion, and wound healing assays, respectively. The EMT-related proteins were detected by western blot. The target genes and the target binding sites were predicted by bioinformatics and further determined by RT-qPCR assay.

Results: MiR-1301-3p was remarkably upregulated in ESCA tissues and cells, and its high expression was associated with poor prognosis of ESCA. Overexpression of miR-1301-3p promoted ESCA cell invasion, migration and mediated EMT process in vitro, whereas knockdown of miR-1301-3p showed the opposite effects. Moreover, NBL1 was predicted as a target gene of miR-1301-3p. NBL1 was lowly expressed in ESCA cells and significantly decreased after upregulation of miR-1301-3p. Meanwhile, we found that low expression of NBL1 was significantly associated with poor prognosis of ESCA patients.

Conclusion: MiR-1301-3p is a potential biomarker for predicting the prognosis of ESCA patients. It may promote ESCA invasion, migration and EMT progression by regulating NBL1 expression.

Keywords: MIR-1301-3p; NBL1; esophageal cancer; invasion; migration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Proliferation / genetics
  • Epithelial-Mesenchymal Transition / genetics
  • Esophageal Neoplasms* / genetics
  • Gene Expression Regulation, Neoplastic
  • Humans
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism

Substances

  • MicroRNAs
  • MIRN1301 microRNA, human