Nanofibers: A current era in drug delivery system

Heliyon. 2023 Aug 9;9(9):e18917. doi: 10.1016/j.heliyon.2023.e18917. eCollection 2023 Sep.

Abstract

Nanofibers have a large area of surface variable 3D topography, porosity, and adaptable surface functions. Several researchers are researching nanofiber technology as a potential solution to the current problems in several fields. It manages cardiovascular disorders, infectious diseases, gastrointestinal tract-associated diseases, neurodegenerative diseases, pain treatment, contraception, and wound healing. The nanofibers are fabricated using various fabrication techniques, such as electrospinning, phase separation, physical Fabrication, and chemical fabrication. Depending on their intended use, nanofibers are manufactured using a variety of polymers. It comprises natural polymers, semi-synthetic polymers, synthetic polymers, metals, metal oxides, ceramics, carbon, nonporous materials, mesoporous materials, hollow structures, core-shell structures, biocomponents, and multi-component materials. Nanofiber composites are a good alternative for targeted gene delivery, protein and peptide delivery, and growth factor delivery. Thus, nanofibers have huge potential in drug delivery, which enables them to be used for various applications and can revolutionize these therapeutic areas. This review systematically studied nanofibers' history, advantages, disadvantages, types, and polymers used in nanofiber technology. Further, polymers and their types used in the preparation of nanofibers were summarised. Mainly review article focuses on the fabrication method, i.e., electrospinning and its types. Finally, the article discussed the applications and recent advancements of nanofabrication technology.

Keywords: Electrospinning; Gene delivery; Nanofiber; Polymers; Tissue engineering.

Publication types

  • Review