A chromosome-level genome assembly of the parasitoid wasp Eretmocerus hayati

Sci Data. 2023 Sep 6;10(1):585. doi: 10.1038/s41597-023-02450-2.

Abstract

Hymenoptera is an order accounting for a large proportion of species in Insecta, among which Chalcidoidea contains many parasitoid species of biocontrol significance. Currently, some species genomes in Chalcidoidea have been assembled, but the chromosome-level genomes of Aphelinidae are not yet available. Using Illumina, PacBio HiFi and Hi-C technologies, we assembled a genome assembly of Eretmocerus hayati (Aphelinidae, Hymenoptera), a worldwide biocontrol agent of whiteflies, at the chromosome level. The assembled genome size is 692.1 Mb with a contig N50 of 7.96 Mb. After Hi-C scaffolding, the contigs was assembled onto four chromosomes with a mapping rate of > 98%. The scaffold N50 length is 192.5 Mb, and Benchmarking Universal Single-Copy Orthologues (BUSCO) value is 95.9%. The genome contains 370.8 Mb repeat sequences and total of 24471 protein coding genes. P450 gene families were identified and analyzed. In conclusion, our chromosome-level genome assembly provides valuable support for future research on the evolution of parasitoid wasps and the interaction between hosts and parasitoid wasps.

Publication types

  • Dataset

MeSH terms

  • Animals
  • Benchmarking
  • Genome*
  • Wasps* / genetics