The ∆Pv-aCO2/∆Ca-vO2 ratio as a predictor of mortality in patients with severe acute respiratory distress syndrome related to COVID-19

PLoS One. 2023 Sep 6;18(9):e0290272. doi: 10.1371/journal.pone.0290272. eCollection 2023.

Abstract

Objective: To evaluate the central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference (∆Pv-aCO2/∆Ca-vO2 ratio) as a predictor of mortality in patients with COVID-19-related severe acute respiratory distress syndrome (ARDS).

Methods: Patients admitted to the intensive care unit with severe ARDS secondary to SARS-CoV-2, and invasive mechanical ventilation were included in this single-center and retrospective cohort study performed between April 18, 2020, and January 18, 2022. The tissue perfusion indexes (lactate, central venous oxygen saturation [ScvO2], and venous-to-arterial carbon dioxide pressure difference [∆Pv-aCO2]), anaerobic metabolism index (∆Pv-aCO2/∆Ca-vO2 ratio), and severity index (Simplified Acute Physiology Score II [SAPSII]) were evaluated to determine its association with the mortality through Cox regression analysis, Kaplan-Meier curve and receiver operating characteristic (ROC) curve.

Results: One hundred fifteen patients were included in the study and classified into two groups, the survivor group (n = 54) and the non-survivor group (n = 61). The lactate, ScvO2, ∆Pv-aCO2, and ∆Pv-aCO2/∆Ca-vO2 ratio medians were 1.6 mEq/L, 75%, 5 mmHg, and 1.56 mmHg/mL, respectively. The ∆Pv-aCO2/∆Ca-vO2 ratio (Hazard Ratio (HR) = 1.17, 95% confidence interval (CI) = 1.06-1.29, p = 0.001) was identified as a mortality biomarker for patients with COVID-19-related severe ARDS. The area under the curve for ∆Pv-aCO2/∆Ca-vO2 ratio was 0.691 (95% CI 0.598-0.774, p = 0.0001). The best cut-off point for ∆Pv-aCO2/∆Ca-vO2 ratio was >2.14 mmHg/mL, with a sensitivity of 49.18%, specificity of 85.19%, a positive likelihood of 3.32, and a negative likelihood of 0.6. The Kaplan-Meier curve showed that survival rates were significantly worse in patients with values greater than this cut-off point.

Conclusions: The ∆Pv-aCO2/∆Ca-vO2 ratio could be used as a predictor of mortality in patients with severe ARDS secondary to SARS-CoV-2.

MeSH terms

  • COVID-19* / complications
  • Carbon Dioxide
  • Humans
  • Lactic Acid
  • Respiratory Distress Syndrome*
  • Retrospective Studies
  • SARS-CoV-2

Substances

  • Carbon Dioxide
  • Lactic Acid

Grants and funding

The author(s) received no specific funding for this work.