A 3,5-dinitropyridin-2yl Substituted Flavonol-based Fluorescent Probe for Rapid Detection of H2S in Water, Foodstuff Samples and Living Cells

J Fluoresc. 2023 Sep 6. doi: 10.1007/s10895-023-03427-5. Online ahead of print.

Abstract

A novel flavonol-based fluorescent probe, Fla-DNT, has been synthesized for the rapid and specific detection of H2S. Fla-DNT exhibits excellent selectivity and anti-interference properties, a short response time (4 min), large Stokes shift (138 nm), and low detection limit (1.357 µM). Upon exposure to H2S, Fla-DNT displays a remarkable increase in fluorescence intensity at 542 nm. Meanwhile, the recognizing site of H2S was predicted through Electrostatic potential and ADCH charges calculations, while the sensing mechanism of H2S was determined via HRMS analysis and DFT calculation. More importantly, the probe owes multiple applications, such as a recovery rate ranging from 92.00 to 102.10% for detecting H2S in water samples, and it can be fabricated into fluorescent strips to track H2S production during food spoilage by tracking color changes, thereby enabling real-time monitoring of food freshness. The bioimaging experiments demonstrate the capability of Fla-DNT to detect both endogenous and exogenous H2S in living cells. These results provide a reliable method and idea for H2S detection in complex environments.

Keywords: Bioimaging; Foodstuff; Hydrogen sulfide; Ultrasensitive; Water samples.

Publication types

  • Review