Automated mechanical exfoliation technique: a spin pumping study in YIG/TMD heterostructures

Nanoscale Horiz. 2023 Oct 23;8(11):1568-1576. doi: 10.1039/d3nh00137g.

Abstract

Spintronics devices rely on the generation and manipulation of spin currents. Two-dimensional transition-metal dichalcogenides (TMDs) are among the most promising materials for a spin current generation due to a lack of inversion symmetry at the interface with the magnetic material. Here, we report on the fabrication of Yttrium Iron Garnet(YIG)/TMD heterostructures by means of a crude and fast method. While the magnetic insulator single-crystalline YIG thin films were grown by magnetron sputtering, the TMDs, namely MoS2 and MoSe2, were directly deposited onto YIG films using an automated mechanical abrasion method. Despite the brute force aspect of the method, it produces high-quality interfaces, which are suitable for spintronic device applications. The spin current density and the effective spin mixing conductance were measured by ferromagnetic resonance, whose values found are among the highest reported in the literature. Our method can be scaled to produce ferromagnetic materials/TMD heterostructures on a large scale, further advancing their potential for practical applications.