One-Pot Synthesis of MOF@MOF: Structural Incompatibility Leads to Core-Shell Structure and Adaptability Control Makes the Sequence

Small. 2024 Jan;20(3):e2305881. doi: 10.1002/smll.202305881. Epub 2023 Sep 5.

Abstract

Core-shell metal-organic frameworks (MOF@MOF) are promising materials with sophisticated structures that cannot only enhance the properties of MOFs but also endow them with new functions. The growth of isotopic lcore-shell MOFs is mostly limited to inconvenient stepwise seeding strategies with strict requirements, and by far one-pot synthesis is still of great challenge due to the interference of different components. Through two pairs of isoreticular MOFs, it reveals that the structural incompatibility is a prerequisite for the formation of MOFs@MOFs by one-pot synthesis, as illustrated by PMOF-3@HHU-9. It further unveils that the adaptability of the shell-MOF is a more key factor for nucleation kinetic control. MOFs with flexible linkers has comparably slower nucleation than MOFs with rigid linkers (forming PMOF-3@NJU-Bai21), and structural-flexible MOFs built by flexible linkers show the lowest nucleation and the most adaptability (affording NJU-Bai21@HHU-9). This degree of adaptability variation controls the sequence and further facilitates the synthesis of a first triple-layered core-shell MOF (PMOF-3@NJU-Bai21@HHU-9) by one-pot synthesis. The insight gained from this study will aid in the rational design and synthesis of other multi-shelled structures by one-pot synthesis and the further expansion of their applications.

Keywords: core-shell structures; linker flexibility; metal-organic frameworks; nucleation kinetics; structural adaptability.