Evaluating the Effectiveness of Potential Interventions for Guinea Worm Disease in Dogs in Chad Using Simulations

Am J Trop Med Hyg. 2023 Sep 5;109(4):835-843. doi: 10.4269/ajtmh.22-0654. Print 2023 Oct 4.

Abstract

Guinea worm (GW) disease (or dracunculiasis) is currently transmitted among dogs in Chad, which presents risks for the human population. We studied how interventions implemented at different levels might reduce the spread of GW disease (geographically and over time) and what levels of interventions might accelerate elimination. We built a multiple-water-source agent-based simulation model to analyze the disease transmission among dogs in Chad, as well as in geographic district clusters, and validated it using local infection data. We considered two interventions: 1) tethering, where infected dogs are kept on a leash during periods of infectivity, and 2) Abate®, under which the water source is treated to reduce infectivity. Our results showed that elimination (0 dog infections) is most likely achieved within 5 years with extremely high levels of tethering (95%) and Abate (90%), when intervention levels are uniform across district clusters. We used an optimization model to determine an improved strategy, with intervention levels which minimize the number of dogs newly infected in the 6th year, under limitations on intervention levels across clusters; the number of dogs infected after 5 years of intervention could be reduced by approximately 220 dogs with an optimized strategy. Finally, we presented strategies that consider fairness based on intervention resource levels and outcomes. Increased tethering and Abate resources above historical levels are needed to achieve the target of GW disease elimination; optimization methods can inform how best to target limited resources and reach elimination faster.