Benzimidazole and piperidine containing novel 1,2,3-triazole hybrids as anti-infective agents: Design, synthesis, in silico and in vitro antimicrobial efficacy

J Biochem Mol Toxicol. 2024 Jan;38(1):e23526. doi: 10.1002/jbt.23526. Epub 2023 Sep 5.

Abstract

Cu alkyne-azide cycloaddition was used to easily synthesize a library of novel heterocycles containing benzimidazole and piperidine based 1,2,3-triazole(7a-7l) derivatives. The synthesized analogs were characterized by various spectroscopic techniques like FTIR, 1 H nuclear magnetic resonance (NMR), 13 C NMR, and mass spectrometry. All these novel bioactive compounds (7a-7l) were evaluated for in vitro antibacterial and antifungal efficacy. Compound 7k exhibited appreciable potent activity against Escherichia coli strain. Compounds 7a, 7b, 7f, and 7i showed excellent potent activity against all bacterial strains. Compound 7b, 7c, 7d, and 7g derivatives showed excellent effects when tested in vitro for antifungal activity against various fungal strains. Additionally, a molecular docking investigation revealed that compound 7k has the ability to bind to the active site of the E. coli DNA gyrase subunit protein and form hydrogen bonds with significant amino acid residues Asp73 and Asp49 in the active sites. In a 100 ns molecular dynamics simulation, the E. coli DNA gyrase protein's steady capacity to bind compound 7k was shown by the low measured root mean square deviation, which was an indication of the complex's conformational stability.

Keywords: 1,2,3-triazole; Cu alkyne-azide cycloaddition; MD simulation; antibacterial; antifungal; benzimidazole; molecular docking.

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Anti-Infective Agents* / pharmacology
  • Antifungal Agents* / pharmacology
  • Benzimidazoles / pharmacology
  • DNA Gyrase
  • Escherichia coli
  • Microbial Sensitivity Tests
  • Molecular Docking Simulation
  • Molecular Structure
  • Piperidines / pharmacology
  • Structure-Activity Relationship
  • Triazoles / chemistry
  • Triazoles / pharmacology

Substances

  • Antifungal Agents
  • Triazoles
  • DNA Gyrase
  • Anti-Infective Agents
  • Anti-Bacterial Agents
  • Benzimidazoles
  • Piperidines