Dewatering behavior and regulation mechanism of montmorillonite nanosheet in aqueous solution

J Colloid Interface Sci. 2023 Dec 15;652(Pt B):1620-1630. doi: 10.1016/j.jcis.2023.08.167. Epub 2023 Aug 26.

Abstract

Two-dimensional montmorillonite nanosheet (MMTNS) is desirable building block for fabricating multifunctional materials as due to its extraordinary properties. In practical applications, however, the concentration of MMTNS prepared by exfoliation is normally too low to be used for material assembling. The general thermal-concentration method is effective, however, it can be time-consuming and require a lot of energy. In this case, the remarkable dispersion stability of MMTNS is worth noting. Herein, the extraordinary dispersion stability of MMTNS derived from electrostatic and hydration repulsion was firstly revealed by molecular dynamics (MD) simulation, which caused the poor dewatering of MMTNS. Further, based on the surface and structural chemistry of MMTNS, a series of strategies, involving charge and cross-linked structure regulation on the edge surface, as well as electrical double-layer modulation and calcification modification based on the electrolytes, were proposed to inhibit the dispersion and enhance the aggregation of MMTNS. Intriguingly, a novel chemical, Tetraethylenepentamine (TEPA) was applied in the dewatering of MMTNS. The TEPA not only act as a cross-linker to bond with MMTNS into an easy-to-dewatering 3D network structure, but also act as a switch for effortless viscosity tuning. Meanwhile, the dual function of electrolytes for electrical double layer compression and calcification modification of MMTNS was investigated by DLVO theory and structural analyses. This work offers explicit directions for improving the dewatering performance of MMTNS to meet the requirements of practical implementation.

Keywords: DLVO theory; Dewatering; Mechanism; Molecular dynamics simulation; Two-dimensional montmorillonite nanosheet.