Hormonal computing: a conceptual approach

Front Chem. 2023 Aug 16:11:1232949. doi: 10.3389/fchem.2023.1232949. eCollection 2023.

Abstract

This paper provides a conceptual roadmap for the use of hormonal bioinspired models in a broad range of AI, neuroengineering, or computational systems. The functional signaling nature of hormones provides an example of a reliable multidimensional information management system that can solve parallel multitasks. Two existing examples of hormonal computing bioinspired possibilities are shortly reviewed, and two novel approaches are introduced, with a special emphasis on what researchers propose as hormonal computing for neurorehabilitation in patients with complete spinal cord injuries. They extend the use of epidural electrical stimulation (EES) by applying sequential stimulations to limbs through prostheses. The prostheses include various limb models and are connected to a neurostimulation bus called the central pattern generator (CPG). The CPG bus utilizes hormonal computing principles to coordinate the stimulation of the spinal cord and muscles.

Keywords: bioinspiration; hormonal computing; hormones; programming; sensors; signaling.

Grants and funding

JV was supported by an ICREA research grant. Funding for the research was provided by B-Rain Labs LLC. Research of AL and MT has been partially supported by the Kazan Federal University Strategic Academic Leadership Program ("PRIORITY-2030").