Soil organic matter carbon chemistry signatures, hydrophobicity and humification index following land use change in temperate peat soils

Heliyon. 2023 Aug 21;9(9):e19347. doi: 10.1016/j.heliyon.2023.e19347. eCollection 2023 Sep.

Abstract

Peatlands play a critical role in the global carbon cycle, storing large amounts of carbon because of a net imbalance between primary production and the microbial decomposition of the organic matter. Nevertheless, peatlands have historically been drained for energy sources (e.g. peat briquettes), forestry, or agriculture - practices that could affect the quality of the soil organic matter (SOM) composition, hydrophobicity and humification index. This study compared the effect of land use change on the quality and composition of peatland organic material in Co-Offaly, Ireland. Specifically, drained and grazing peat (grassland), drained and forest plantation peat (forest plantation), drained and industrial cutaway peat (cutaway bog) and an undrained actively accumulating bog (as a reference for natural peatland) were studied. Fourier-transform infrared spectroscopy (FTIR) was used to examine the organic matter quality, specifically the degree of decomposition (DDI), carbon chemistry signatures, hydrophobicity and humification index. The ratio of hydrophobic to hydrophilic group intensities was calculated as the SOM hydrophobicity. In general, there is greater variance in the carbon chemistry signature, such as aliphatic methyl and methylene, C=O stretching of amide groups, aromatic C=C, strong H-bond C=O of conjugated ketones and O-H deformation and C- O stretching of phenolics and secondary alcohols of the peat samples from industrial cutaway bog samples than in the grassland and forest plantation samples. The hydrophobicity and the aromaticity of the soil organic matter (SOM) are significantly impacted by land use changes, with a trend of order active bog > forest plantation > industrial cutaway bog > grassland. A comparison of the degree of decomposition index of the peat from active bog showed a more advanced state of peat degradation in grassland and industrial cutaway bog and, to a lesser extent, in forest plantation.

Keywords: Degree of degradation and peatland; FTIR; Functional groups; Humification index; Hydrophilic; Hydrophobic.