Mechanistic study of cytochrome P450 enzyme-mediated cytotoxicity of psoralen and isopsoralen

Food Chem Toxicol. 2023 Oct:180:114011. doi: 10.1016/j.fct.2023.114011. Epub 2023 Sep 1.

Abstract

Psoralen and isopsoralen are the major components responsible for Psoraleae Fructus-induced hepatotoxicity. This study explored the role of metabolic activation by cytochrome P450 (CYP) enzymes in psoralen- and isopsoralen-induced cytotoxicity and its potential mechanisms. Inhibitors of CYP1A2, 2C9, 2C19, 2D6, 2E1, and 3A4 were used to screen specific CYP enzymes responsible for the metabolic activation of psoralen and isopsoralen in mouse primary hepatocytes, which was verified using the corresponding transfected cell lines. Network toxicology and transcriptome analyses were performed to explore the mechanisms underlying toxicity. Psoralen and isopsoralen decreased the viability of mouse primary hepatocytes, whereas the inhibition of CYP2C9, 2C19, 2D6, and 2E1 significantly increased their viability. Psoralen-induced cytotoxicity was significantly enhanced by the overexpression of CYP2C19 in Chinese hamster ovary cells, whereas the overexpression of the above CYP enzymes did not affect the cytotoxicity of isopsoralen. Psoralen- and isopsoralen-induced cytotoxic effects were associated with putative core targets (i.e., Fn1, Thbs1, and Tlr2) and multiple signaling pathways (e.g., PI3K-Akt, MAPK, and TNF pathways). Our results demonstrate that the metabolic activation of psoralen and isopsoralen is mediated by CYP enzymes, thereby regulating multiple core targets and signaling pathways and resulting in cytotoxicity.

Keywords: CYP-Overexpressing CHO cell lines; Cytotoxicity; Isopsoralen; Network toxicology; Psoralen; RNA-seq.