Karyotype as code of codes: An inheritance platform to shape the pattern and scale of evolution

Biosystems. 2023 Nov:233:105016. doi: 10.1016/j.biosystems.2023.105016. Epub 2023 Sep 1.

Abstract

Organismal evolution displays complex dynamics in phase and scale which seem to trend towards increasing biocomplexity and diversity. For over a century, such amazing dynamics have been cleverly explained by the apparently straightforward mechanism of natural selection: all diversification, including speciation, results from the gradual accumulation of small beneficial or near-neutral alterations over long timescales. However, although this has been widely accepted, natural selection makes a crucial assumption that has not yet been validated. Specifically, the informational relationship between small microevolutionary alterations and large macroevolutionary changes in natural selection is unclear. To address the macroevolution-microevolution relationship, it is crucial to incorporate the concept of organic codes and particularly the "karyotype code" which defines macroevolutionary changes. This concept piece examines the karyotype from the perspective of two-phased evolution and four key components of information management. It offers insight into how the karyotype creates and preserves information that defines the scale and phase of macroevolution and, by extension, microevolution. We briefly describe the relationship between the karyotype code, the genetic code, and other organic codes in the context of generating evolutionary novelties in macroevolution and imposing constraints on them as biological routines in microevolution. Our analyses suggest that karyotype coding preserves many organic codes by providing system-level inheritance, and similar analyses are needed to classify and prioritize a large number of different organic codes based on the phases and scales of evolution. Finally, the importance of natural information self-creation is briefly discussed, leading to a call to integrate information and time into the relationship between matter and energy.

MeSH terms

  • Biological Evolution
  • Evolution, Molecular
  • Genetic Code* / genetics
  • Inheritance Patterns*
  • Karyotype