Screening for new psychoactive substances in wastewater from educational institutions

Environ Res. 2023 Nov 15;237(Pt 2):117061. doi: 10.1016/j.envres.2023.117061. Epub 2023 Aug 31.

Abstract

Drug (ab)use among young people is a serious issue, negatively impacting their well-being and prospects. The emergence of new psychoactive substances (NPS) further complicates the situation as they are easily accessible (e.g., online), but users are at high risk of intoxication as their chemical identity is often unknown and toxicity poorly understood. While surveys and drug testing are traditionally used in educational institutions to comprehend drug use trends and establish effective prevention programs, they are not without their limitations. Accordingly, we investigated the occurrence of NPS in educational institutions through wastewater analysis and critically evaluated the viability of the approach. The study included eight wastewater samples from primary schools (ages 6-15 years), six from secondary schools (ages 15-19 years), three from institutions for both secondary and higher education (ages 15+), and six from higher educational institutions (ages 19+). Samples were obtained mid-week and evaluated in two Slovenian municipalities; the capital Ljubljana and a smaller one (M1). Samples were screened using liquid chromatography-ion mobility-high-resolution mass spectrometry (LC-IMS-HRMS), and NPS identified at three levels of confidence (Level 1: unequivocal, Level 2: probable, Level 3: tentative) from a suspect list containing over 5600 entries. NPS were identified in all types of educational institutions. Most were synthetic stimulants, with 3-MMC, ephedrine, 4-chloro-α-PPP, and ethcathinone being unequivocally identified. Also, NPS were present in wastewater from all educational institution types revealing potential spatial but no inter-institutional trends. Although specific groups cannot be targeted, the study, as a proof-of-concept, demonstrates that a suspect screening of wastewater employing LC-IMS-HRMS can be used as a radar for NPS in educational institutions and potentially replace invasive drug testing.

Keywords: Drugs; NPS; School; Sewage; University; Wastewater-based epidemiology.