Comparative environmental sustainability assessment of biohydrogen production methods

Sci Total Environ. 2023 Dec 15:904:166613. doi: 10.1016/j.scitotenv.2023.166613. Epub 2023 Sep 1.

Abstract

As energy crisis is recognized as an increasingly serious concern, the topic on biohydrogen (bioH2) production, which is renewable and eco-friendly, appears to be a highly-demanding subject. Although bioH2 production technologies are still at the developmental stage, there are many reported works available on lab- and pilot-scale systems with a promising future. This paper presents various potential methods of bioH2 production using biomass resources and comparatively assesses them for environmental impacts with a special emphasis on the specific biological processes. The environmental impact factors are then normalized with the feature scaling and normalization methods to evaluate the environmental sustainability dimensions of each bioH2 production method. The results reveals that the photofermentation (PF) process is more environmentally sustainable than the other investigated biological and thermochemical processes, in terms of emissions, water-fossil-mineral uses, and health issues. The global warming potential (GWP) and acidification potential (AP) for the PF process are then found to be 1.88 kg-CO2 eq. and 3.61 g-SO2 eq., which become the lowest among all processes, including renewable energy-based H2 production processes. However, the dark fermentation-microbial electrolysis cell (DF-MEC) hybrid process is considered the most environmentally harmful technique, with the highest GWP value of 14.6 kg-CO2 eq. due to their superior electricity and heat requirements. The water conception potential (WCP) of 84.5 m3 and water scarcity footprint (WSF) of 3632.9 m3 for the DF-MEC process is also the highest compared to all other processes due to the huge amount of wastewater formation potential of the system. Finally, the overall rankings confirm that biological processes are primarily promising candidates to produce bioH2 from an environmentally friendly point of view.

Keywords: Biohydrogen; Biological processes; Cleaner production; Environmental impact; Sustainability; Thermochemical processes.

Publication types

  • Review

MeSH terms

  • Carbon Dioxide*
  • Environment
  • Fermentation
  • Hydrogen*
  • Water

Substances

  • Carbon Dioxide
  • Hydrogen
  • Water