Constructing Nanoporous Ir/Ta2 O5 Interfaces on Metallic Glass for Durable Acidic Water Oxidation

Small. 2024 Jan;20(2):e2305479. doi: 10.1002/smll.202305479. Epub 2023 Sep 1.

Abstract

Although proton exchange membrane water electrolyzers (PEMWE) are considered as a promising technique for green hydrogen production, it remains crucial to develop intrinsically effective oxygen evolution reaction (OER) electrocatalysts with high activity and durability. Here, a flexible self-supporting electrode with nanoporous Ir/Ta2O5 electroactive surface is reported for acidic OER via dealloying IrTaCoB metallic glass ribbons. The catalyst exhibits excellent electrocatalytic OER performance with an overpotential of 218 mV for a current density of 10 mA cm-2 and a small Tafel slope of 46.1 mV dec-1 in acidic media, superior to most electrocatalysts. More impressively, the assembled PEMWE with nanoporous Ir/Ta2 O5 as an anode shows exceptional performance of electrocatalytic hydrogen production and can operate steadily for 260 h at 100 mA cm-2 . In situ spectroscopy characterizations and density functional theory calculations reveal that the modest adsorption of OOH* intermediates to active Ir sites lower the OER energy barrier, while the electron donation behavior of Ta2 O5 to stabilize the high-valence states of Ir during the OER process extended catalyst's durability.

Keywords: dealloying; metallic glasses; nanoporous; oxygen evolution reaction; proton exchange membranes.