Polysaccharide extracted from cultivated Sanghuangporous vaninii spores using three-phase partitioning with enzyme/ultrasound pretreatment: Physicochemical characteristics and its biological activity in vitro

Int J Biol Macromol. 2023 Dec 31;253(Pt 1):126622. doi: 10.1016/j.ijbiomac.2023.126622. Epub 2023 Aug 30.

Abstract

Sanghuangporous vaninii, as a valuable dietary supplement and medicinal ingredient, contains abundant bioactive polysaccharides that have health-promoting effects. In the present study, four polysaccharides (SVSPs-C, SVSPs-E, SVSPs-U, and SVSPs-E/U) were extracted for the first time from S. vaninii spores by three-phase partitioning (TPP), enzyme pretreatment before TPP (E-TPP), ultrasonic pretreatment before TPP (U-TPP), and enzyme pretreatment followed by ultrasonic before TPP (E/U-TPP) methods, respectively. Their physicochemical characteristics and in vitro pharmacological functions were determined and compared. Results showed that four TPP-based extraction methods had remarkable impacts on the extraction yield, chemical properties, monosaccharide compositions, and molecular weights (Mw) of SVSPs. Specifically, SVSPs-E/U obtained by E/U-TPP showed the highest extraction yield (25.40 %), carbohydrate content (88.50 %), and the lowest protein content (0.86 %). The four SVSPs had high-Mw (183.8-329.1 kDa) and low-Mw (23.0-156.4 kDa) fractions and mainly consisted of galactose, glucose, and mannose with different contents. In vitro bioactivities assays indicated that SVSPs-E/U possessed stronger antioxidant, hypoglycemic, hypouricemic, immunostimulatory, and antitumor activities than those of SVSPs-C, SVSPs-E, and SVSPs-U. Therefore, our results provide an efficient and promising extraction technique for bioactive polysaccharides from S. vaninii spores, as well as SVSPs had the potential to be applied in functional food, pharmaceutical, and cosmetics fields.

Keywords: Biological activity; Sanghuangporous vaninii; Three-phase partitioning.

MeSH terms

  • Antioxidants / chemistry
  • Antioxidants / pharmacology
  • Carbohydrates* / chemistry
  • Molecular Weight
  • Polysaccharides* / chemistry
  • Polysaccharides* / pharmacology
  • Spores

Substances

  • Polysaccharides
  • Carbohydrates
  • Antioxidants