Verbascoside: A neuroprotective phenylethanoid glycosides with anti-depressive properties

Phytomedicine. 2023 Nov:120:155027. doi: 10.1016/j.phymed.2023.155027. Epub 2023 Aug 18.

Abstract

Background: Verbascoside is a natural and water-soluble phenylethanoid glycoside found in several medicinal plants. It has extensive pharmacological effects, including antioxidative and antineoplastic actions, and a wide range of therapeutic effects against depression.

Purpose: In this review, we appraised preclinical and limited clinical evidence to fully discuss the anti-depression capacity of verbascoside and its holistic characteristics that can contribute to better management of depression in vivo and in vitro models, as well as, its toxicities and medicinal value.

Methods: This review was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A systematic review of 32 preclinical trials published up to April 2023, combined with a comprehensive bioinformatics analysis of network pharmacology and molecular docking, was conducted to elucidate the antidepressant mechanism of action of verbascoside. Studies included in the systematic review were obtained from 7 electronic databases: PubMed, Scopus, Web of Science, Cochrane, ResearchGate, ScienceDirect, and Google Scholar.

Results: Studies on the antidepressant effects of verbascoside showed that various pharmacological mechanisms and pathways, such as modulating the levels of monoamine neurotransmitters, inhibiting hypothalamic-pituitary-adrenal (HPA) axis hyperfunction and promoting neuroprotection may be involved in the process of its action against depression. Verbascoside promotes dopamine (DA) biosynthesis by promoting the expression of tyrosine hydroxylase mRNA and protein, upregulates the expression of 5-hydroxytryptamine receptor 1B (5-HT1B), prominence protein, microtubule-associated protein 2 (MAP2), hemeoxygenase-1 (HO-1), SQSTM1, Recombinant Autophagy Related Protein 5 (ATG5) and Beclin-1, and decreases the expression of caspase-3 and a-synuclein, thus exerting antidepressant effects. We identified seven targets (CCL2, FOS, GABARAPL1, CA9, TYR, CA12, and SQSTM1) and three signaling pathways (glutathione metabolism, metabolism of xenobiotics by cytochrome P450, fluid shear stress and atherosclerosis) as potential molecular biological sites for verbascoside.

Conclusions: These findings provide strong evidence that verbascoside exerts its antidepressant effects through various pharmacological mechanisms. However, further multicentre clinical case-control and molecularly targeted fishing studies are required to confirm the clinical efficacy of verbascoside and its underlying direct targets.

Keywords: Depression; Neuroprotection; Pharmacological mechanism; Systematic review; Traditional Chinese medicine; Verbascoside.

Publication types

  • Systematic Review
  • Review

MeSH terms

  • Glycosides* / pharmacology
  • Molecular Docking Simulation
  • Neuroprotection*
  • Sequestosome-1 Protein

Substances

  • acteoside
  • Glycosides
  • Sequestosome-1 Protein