Putting conservation gardening into practice

Sci Rep. 2023 Aug 31;13(1):12671. doi: 10.1038/s41598-023-39432-8.

Abstract

Conservation gardening (CG) represents a socio-ecological approach to address the decline of native plant species and transform the gardening industry into an innovative conservation tool. However, essential information regarding amenable plants, their ecological requirements for gardening, and commercial availability remains limited and not readily available. In this study, we present a workflow using Germany as a case study to bridge this knowledge gap. We synthesized the Red Lists of all 16 federal states in Germany, and text-mined a comprehensive platform for garden plants, as well as multiple German producers of native plants. To provide accessible information, we developed a user-friendly app ( https://conservation-gardening.shinyapps.io/app-en/ ) that offers region-specific lists of CG plants, along with practical guidance for planting and purchasing. Our findings reveal that a median of 845 plant species are red-listed across federal states (ranging from 515 to 1123), with 41% of these species amenable to gardening (ranging from 29 to 53%), resulting in a total of 988 CG species. Notably, 66% of these species (650) are already available for purchase. Additionally, we observed that many CG plants exhibit drought tolerance and require less fertilizer on average, with implications for long-term urban planning and climate adaptation. Collaborating with gardening experts, we present a selection of purchasable CG balcony plants for each federal state, highlighting the feasibility of CG even for individuals without gardens. With a multitude of declining plants amenable to gardening and the vital role of gardens as refuges and green corridors, CG holds substantial potential to catalyze transformative change in bending the curve of biodiversity loss.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization
  • Biodiversity
  • Catalysis
  • Gardening*
  • Gardens*
  • Humans